دانلود مقاله ISI انگلیسی شماره 150779
ترجمه فارسی عنوان مقاله

تجزیه چگالی تخلخل چگالی: چارچوب برای خوشه بندی و الگوریتم های تجزیه و تحلیل تصویر

عنوان انگلیسی
The Weight-Shape decomposition of density estimates: A framework for clustering and image analysis algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150779 2018 29 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 81, September 2018, Pages 190-199

ترجمه کلمات کلیدی
تخمین تراکم، خوشه کوانتومی، خوشه بندی متوسطه، حداکثر آنتروپی، استخراج تصویر کانتور،
کلمات کلیدی انگلیسی
Density estimate; Quantum clustering; Mean-shift clustering; Maximum entropy; Image contour extraction;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه چگالی تخلخل چگالی: چارچوب برای خوشه بندی و الگوریتم های تجزیه و تحلیل تصویر

چکیده انگلیسی

We propose an analysis scheme which addresses the Parzen-window and mixture model methods for estimating the probability density function of data points in feature space. Both methods construct the estimate as a sum of kernel functions (usually Gaussians). By adding an entropy-like function we prove that the probability distribution is a product of a weight function and a shape distribution. This Weight-Shape decomposition leads to new interpretations of established clustering algorithms. Furthermore, it suggests the construction of three different clustering schemes, which are based on gradient-ascent flow of replica points in feature space. Two of these are Quantum Clustering and the Mean-Shift algorithm. The third algorithm is based on maximal-entropy. In our terminology they become Maximal Shape Clustering, Maximal Probability Clustering and Maximal Weight Clustering, correspondingly. We demonstrate the different methods and compare them to each other on one artificial example and two natural data sets. We also apply the Weight-Shape decomposition to image analysis. The shape distribution acts as an edge detector. It serves to generate contours, as demonstrated on face images. Furthermore, it allows for defining a convolutional Shape Filter.