دانلود مقاله ISI انگلیسی شماره 150804
ترجمه فارسی عنوان مقاله

رویکرد چند هسته ای به الگوریتم خوشه بندی فازی نیمه نظارت شده برای طبقه بندی پوشش زمین

عنوان انگلیسی
Multiple kernel approach to semi-supervised fuzzy clustering algorithm for land-cover classification
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150804 2018 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 68, February 2018, Pages 205-213

پیش نمایش مقاله
پیش نمایش مقاله  رویکرد چند هسته ای به الگوریتم خوشه بندی فازی نیمه نظارت شده برای طبقه بندی پوشش زمین

چکیده انگلیسی

Clustering is used to detect sound structures or patterns in a dataset in which objects positioned within the same cluster exhibit a substantial level of similarity. In numerous clustering problems, patterns is not easily separable due to the highly complex shaped data. In the previous studies, kernel-based methods have exhibited the effectiveness to partition such data. In this paper, we proposed a semi-supervised clustering method based fuzzy c-means algorithm using multiple kernel technique, called SMKFCM, in which the rudimentary centroids are directly used to the calculating process of centroids. The SMKFCM algorithm is on the basis of combining the labeled and unlabeled data together to improve performance. We used the labeled patterns to calculate the centrality of clusters considered as the rudimentary centroids which are added into the objective functions. The SMKFCM algorithm can be applied to both clustering and classification problems. The experimental results show that SMKFCM algorithm can improve significantly the classification accuracy which comes from comparison with a conventional classification or clustering algorithms such as semi-supervised kernel fuzzy c-means (S2KFCM), semi-supervised fuzzy c-means (SFCM) and Self-trained semi-supervised SVM algorithm (PS3VM).