دانلود مقاله ISI انگلیسی شماره 150829
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی نیمه نظارتی برای گروه بندی مقالات علمی

عنوان انگلیسی
Semi-Supervised Clustering Algorithms for Grouping Scientific Articles
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150829 2017 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Procedia Computer Science, Volume 108, 2017, Pages 325-334

پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی نیمه نظارتی برای گروه بندی مقالات علمی

چکیده انگلیسی

Creating sessions in scientific conferences consists in grouping papers with common topics taking into account the size restrictions imposed by the conference schedule. Therefore, this problem can be considered as semi-supervised clustering of documents based on their content. This paper aims to propose modifications in traditional clustering algorithms to incorporate size constraints in each cluster. Specifically, two new algorithms are proposed to semi-supervised clustering, based on: binary integer linear programming with cannot-link constraints and a variation of the K-Medoids algorithm, respectively. The applicability of the proposed semi-supervised clustering methods is illustrated by addressing the problem of automatic configuration of conference schedules by clustering articles by similarity. We include experiments, applying the new techniques, over real conferences datasets: ICMLA-2014, AAAI-2013 and AAAI-2014. The results of these experiments show that the new methods are able to solve practical and real problems.