دانلود مقاله ISI انگلیسی شماره 150925
ترجمه فارسی عنوان مقاله

یک الگوریتم تکاملی دیفرانسیل چند هدفه برای برنامه ریزی ماشین آلات موازی دسته ای با توجه به هزینه مصرف برق

عنوان انگلیسی
A multi-objective differential evolution algorithm for parallel batch processing machine scheduling considering electricity consumption cost
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150925 2018 45 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Operations Research, Volume 96, August 2018, Pages 55-68

ترجمه کلمات کلیدی
برنامه ریزی پایدار، هزینه کل برق، ماشین آلات پردازش دسته ای، الگوریتم تکامل دیفرانسیل، بهینه سازی چند هدفه،
کلمات کلیدی انگلیسی
Sustainable scheduling; Total electricity cost; Batch processing machines; Differential evolution algorithm; Multi-objective optimization;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم تکاملی دیفرانسیل چند هدفه برای برنامه ریزی ماشین آلات موازی دسته ای با توجه به هزینه مصرف برق

چکیده انگلیسی

The manufacturing industry consumes massive amounts of energy and produces great numbers of greenhouse gases every year. Recently, an increasing attention has been paid to the energy efficiency of the manufacturing industry. This paper considers a parallel batch processing machine (BPM) scheduling problem in the presence of dynamic job arrivals and a time-of-use pricing scheme. The objective is to simultaneously minimize makespan, a measure of production efficiency and minimize total electricity cost (TEC), an indicator for environmental sustainability. A BPM is capable of processing multiple jobs at a time, which has wide applications in many manufacturing industries such as electronics manufacturing facilities and steel-making plants. We formulate this problem as a mixed integer programming model. Considering the problem is strongly NP-hard, a multi-objective differential evolution algorithm is proposed for effectively solving the problem at large scale. The performance of the proposed algorithm is evaluated by comparing it to the well-known NSGA-II algorithm and another multi-objective optimization algorithm AMGA. Experimental results show that the proposed algorithm performs better than NSGA-II and AMGA in terms of solution quality and distribution.