دانلود مقاله ISI انگلیسی شماره 150973
ترجمه فارسی عنوان مقاله

الگوریتم بهینه سازی تلفیقی برای مشکلات برنامه ریزی پروژه با محدودیت منابع

عنوان انگلیسی
Consolidated optimization algorithm for resource-constrained project scheduling problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150973 2017 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 418–419, December 2017, Pages 346-362

ترجمه کلمات کلیدی
مشکلات برنامه ریزی پروژه با محدودیت منابع، الگوریتمهای تکاملی، چند الگوریتم، چند اپراتور،
کلمات کلیدی انگلیسی
Resource-constrained project scheduling problems; Evolutionary algorithms; Multi-algorithm; multi-operator;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم بهینه سازی تلفیقی برای مشکلات برنامه ریزی پروژه با محدودیت منابع

چکیده انگلیسی

Resource-constrained project scheduling problems (RCPSPs) represent an important class of practical problems. Over the years, many optimization algorithms for solving them have been proposed, with their performances evaluated using well-established test instances with various levels of complexity. While it is desirable to obtain a high-quality solution and fast rate of convergence from an optimization algorithm, no single one performs well across the entire space of instances. Furthermore, even for a given algorithm, the optimal choice of its operators and control parameters may vary from one problem to another. To deal with this issue, we present a generic framework for solving RCPSPs in which various meta-heuristics, each with multiple search operators, are self-adaptively used during the search process and more emphasis is placed on the better-performing algorithms, and their underlying search operators. To further improve the rate of convergence and introduce good-quality solutions into the population earlier, a local search approach is introduced. The experimental results clearly indicate the capability of the proposed algorithm to attain high-quality results using a small population. Compared with several state-of-the-art algorithms, the proposed one delivers the best solutions for problems with 30 and 60 activities, and is very competitive for those involving 120 activities.