دانلود مقاله ISI انگلیسی شماره 152982
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل تجربی از اثربخشی معیارهای نرم افزار و مدل پیش بینی خطا برای شناسایی کلاس های معیوب

عنوان انگلیسی
An empirical analysis of the effectiveness of software metrics and fault prediction model for identifying faulty classes
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
152982 2017 41 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 26157 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 90 تومان 36 روز بعد از پرداخت 2,354,130 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 180 تومان 18 روز بعد از پرداخت 4,708,260 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Standards & Interfaces, Volume 53, August 2017, Pages 1-32

ترجمه کلمات کلیدی
تکنیک های انتخاب ویژگی، شبکه های عصبی مصنوعی، روش گروهی، معیارهای کد منبع، چارچوب تجزیه و تحلیل هزینه،
کلمات کلیدی انگلیسی
Feature selection techniques; Artificial neural network; Ensemble method; Source code metrics; Cost analysis framework;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل تجربی از اثربخشی معیارهای نرم افزار و مدل پیش بینی خطا برای شناسایی کلاس های معیوب

چکیده انگلیسی

Software fault prediction models are used to predict faulty modules at the very early stage of software development life cycle. Predicting fault proneness using source code metrics is an area that has attracted several researchers' attention. The performance of a model to assess fault proneness depends on the source code metrics which are considered as the input for the model. In this work, we have proposed a framework to validate the source code metrics and identify a suitable set of source code metrics with the aim to reduce irrelevant features and improve the performance of the fault prediction model. Initially, we applied a t-test analysis and univariate logistic regression analysis to each source code metric to evaluate their potential for predicting fault proneness. Next, we performed a correlation analysis and multivariate linear regression stepwise forward selection to find the right set of source code metrics for fault prediction. The obtained set of source code metrics are considered as the input to develop a fault prediction model using a neural network with five different training algorithms and three different ensemble methods. The effectiveness of the developed fault prediction models are evaluated using a proposed cost evaluation framework. We performed experiments on fifty six Open Source Java projects. The experimental results reveal that the model developed by considering the selected set of source code metrics using the suggested source code metrics validation framework as the input achieves better results compared to all other metrics. The experimental results also demonstrate that the fault prediction model is best suitable for projects with faulty classes less than the threshold value depending on fault identification efficiency (low – 48.89%, median- 39.26%, and high – 27.86%).

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 26157 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 90 تومان 36 روز بعد از پرداخت 2,354,130 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 180 تومان 18 روز بعد از پرداخت 4,708,260 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.