دانلود مقاله ISI انگلیسی شماره 153262
ترجمه فارسی عنوان مقاله

مدل سازی جایگزین برای افزایش تجزیه و تحلیل نتایج بر اساس دینامیک سیالات محاسباتی

عنوان انگلیسی
Surrogate modelling for enhancing consequence analysis based on computational fluid dynamics
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
153262 2017 32 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Loss Prevention in the Process Industries, Volume 48, July 2017, Pages 173-185

ترجمه کلمات کلیدی
تجزیه و تحلیل نتیجه، مدل سازی نتیجه، دینامیک سیالات محاسباتی، طراحی آزمایش، مدل سازی جایگزین، استخر آتش
کلمات کلیدی انگلیسی
Consequence analysis; Consequence modelling; Computational fluid dynamics; Design of experiments; Surrogate modelling; Pool fire;
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی جایگزین برای افزایش تجزیه و تحلیل نتایج بر اساس دینامیک سیالات محاسباتی

چکیده انگلیسی

In place of traditional empirical methodologies, computational fluid dynamics (CFD) is used for more accurate consequence modelling as it takes into account of geometrical obstructions. However, its use is costly and not practical for large-scale use in the industry. The present paper explores the integration of design of experiments and surrogate modelling methodologies to enhance the use of CFD-based consequence models. A new integrated methodology is applied to a case study of liquefied natural gas (LNG) pool fire, showing the challenges of training and evaluation of large-scale surrogate models. This study investigates the differences between using a non-linear global surrogate model (namely, least-squares support vector machines) and a linear piece-wise surrogate model (namely, linear nearest neighbour interpolation), as well as the use of sequential sampling algorithm as a means of improving overall surrogate accuracy. The results are analysed and localization of surrogate error regions is discussed in the paper. The new integrated methodology shows potential in improving the way consequence analysis is performed, and it could be an enabler of real-time risk monitoring systems.