دانلود مقاله ISI انگلیسی شماره 153341
ترجمه فارسی عنوان مقاله

برآورد و محاسبه کارآیی برای مدل های افزایشی تعمیم یافته با عملکرد پیوند ناشناخته

عنوان انگلیسی
Efficient estimation and computation for the generalised additive models with unknown link function
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
153341 2018 46 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Econometrics, Volume 202, Issue 2, February 2018, Pages 230-244

ترجمه کلمات کلیدی
مدل افزایشی عمومی، هموار خطی محلی، تقریبا یک احتمال، خواص متضاد، بازده نیمه پارامتریک،
کلمات کلیدی انگلیسی
Generalised additive model; Local linear smoothing; Quasi-likelihood; Asymptotical properties; Semiparametric efficiency;
پیش نمایش مقاله
پیش نمایش مقاله  برآورد و محاسبه کارآیی برای مدل های افزایشی تعمیم یافته با عملکرد پیوند ناشناخته

چکیده انگلیسی

The generalised additive models (GAM) are widely used in data analysis. In the application of the GAM, the link function involved is usually assumed to be a commonly used one without justification. Motivated by a real data example with binary response where the commonly used link function does not work, we propose a generalised additive models with unknown link function (GAMUL) for various types of data, including binary, continuous and ordinal. The proposed estimators are proved to be consistent and asymptotically normal. Semiparametric efficiency of the estimators is demonstrated in terms of their linear functionals. In addition, an iterative algorithm, where all estimators can be expressed explicitly as a linear function of Y, is proposed to overcome the computational hurdle for the GAM type model. Extensive simulation studies conducted in this paper show the proposed estimation procedure works very well. The proposed GAMUL are finally used to analyze a real dataset about loan repayment in China, which leads to some interesting findings.