دانلود مقاله ISI انگلیسی شماره 57765
ترجمه فارسی عنوان مقاله

خواص و صلاحیت مقره های پیشرفته برای آهن ربای فیوژن

عنوان انگلیسی
Characterization and qualification of advanced insulators for fusion magnets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
57765 2013 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Fusion Engineering and Design, Volume 88, Issue 5, June 2013, Pages 350–360

ترجمه کلمات کلیدی
خواص مکانیکی؛ مخلوط سیانات استر؛ تابش راکتور؛ فلوئنس نوترون؛ عایق مگنت - کائوچو و مواد مرکب تقویت شده با الیاف
کلمات کلیدی انگلیسی
Mechanical properties; Cyanate ester blends; Reactor irradiation; Neutron fluence; Magnet insulation; Fiber reinforced composites
پیش نمایش مقاله
پیش نمایش مقاله  خواص و صلاحیت مقره های پیشرفته برای آهن ربای فیوژن

چکیده انگلیسی

Intensive research over the past decades demonstrated that the mechanical material performance of epoxy based glass fiber reinforced plastics, which are normally used by industry as insulating materials in magnet technology, degrades dramatically upon irradiation to fast neutron fluences above 1 × 1022 m−2 (E > 0.1 MeV). which have to be expected in large fusion devices like ITER. This triggered an insulation development program based on cyanate ester (CE) and blends of CE and epoxies, which are not affected up to twice this fluence level, and therefore appropriate for large fusion magnets like the ITER TF coils. Together with several suppliers resin mixtures with very low viscosity over many hours were developed, which renders them suitable for the impregnation of very large volumes. This paper reports on a qualification program carried out during the past few years to characterize suitable materials, i.e. various boron-free R-glass fiber reinforcements interleaved with polyimide foils embedded in CE/epoxy blends containing 40% of CE, a repair resin, a conductor insulation, and various polyimide/glass fiber bonded tapes. The mechanical properties were assessed at 77 K in tension and in the interlaminar shear mode under static and dynamic load conditions prior to and after reactor irradiation at ~340 K to neutron fluences of up to 2 × 1022 m−2 (E > 0.1 MeV). i.e. twice the ITER design fluence. The results confirmed that a sustainable solution has become available for this critical magnet component of ITER.