دانلود مقاله ISI انگلیسی شماره 57815
ترجمه فارسی عنوان مقاله

تجزیه شکستگی یک کابل یک رسانای الکتریکی با یک ناحیه تماس در یک سیستم بیومتریک مغناطیسی الکترواستاتیکی

عنوان انگلیسی
Fracture analysis of an electrically conductive interface crack with a contact zone in a magnetoelectroelastic bimaterial system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
57815 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Solids and Structures, Volume 53, 15 January 2015, Pages 48–57

ترجمه کلمات کلیدی
کرک رابط رابط رسانا الکتریکی، منطقه تماس مواد مغناطیسی الکترواستاتیک، فاکتور شدت فیلد
کلمات کلیدی انگلیسی
Electrically conductive interface crack; Contact zone; Magnetoelectroelastic material; Field intensity factor

چکیده انگلیسی

An electrically conductive interface crack with a contact zone in a magnetoelectroelastic (MEE) bimaterial system is considered. The bimaterial is polarized in the direction orthogonal to the crack faces and is loaded by remote tension and shear forces as well as electrical and magnetic fields parallel to the crack faces. It is assumed that the electrical field inside the crack faces is equal to zero and the magnetic quantities are continuous across the crack faces. Using special expressions of magnetoelectromechanical quantities via sectionally-analytic functions proposed in this paper, a combined Dirichlet–Riemann and Hilbert boundary value problem is formulated and solved analytically. Explicit analytical expressions for the characteristic mechanical, electrical and magnetic parameters are presented. A simple transcendental equation is derived for the determination of the contact zone length. Stress, electric field and magnetic field intensity factors and the contact zone length are found for various loading cases. A significant influence of the electric field on the contact zone length, stress and electric field intensity factors is observed. Magnetoelectrically permeable conditions in the crack region are also investigated and comparisons of different crack models are performed. Results presented in this paper should have potential applications to the design of multilayered magnetoelectroelastic (MEE) structures and devices.