دانلود مقاله ISI انگلیسی شماره 70399
ترجمه فارسی عنوان مقاله

تدارکات یکپارچه bi-objective، تولید، و مشکل توزیع طراحی شبکه زنجیره تامین چند پله : یک تنظیم جدید MOEA

عنوان انگلیسی
A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: A new tuned MOEA
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
70399 2015 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Operations Research, Volume 54, February 2015, Pages 35–51

ترجمه کلمات کلیدی
طراحی شبکه زنجیره تامین (SCND)؛ بهینه سازی مبتنی بر بیوگرافی چند هدفه (Mobbo)؛ روش شبیه سازی آنیلینگ چند هدفه (MOSA)؛ الگوریتم ژنتیک مرتب سازی غیر تحت سلطه (NSGA-II)؛ روش تاگوچی؛ VIKOR
کلمات کلیدی انگلیسی
Supply chain network design (SCND); Multi-objective biogeography based optimization (MOBBO); Multi-objective simulated annealing (MOSA); Non-dominated sorting genetic algorithm (NSGA-II); Taguchi method; VIKOR
پیش نمایش مقاله
پیش نمایش مقاله  تدارکات یکپارچه bi-objective، تولید، و مشکل توزیع طراحی شبکه زنجیره تامین چند پله : یک تنظیم جدید MOEA

چکیده انگلیسی

Efficient management of supply chain (SC) requires systematic considerations of miscellaneous issues in its comprehensive version. In this paper, a multi-periodic structure is developed for a supply chain network design (SCND) involving suppliers, factories, distribution centers (DCs), and retailers. The nature of the logistic decisions is tactical that encompasses procurement of raw materials from suppliers, production of finished product at factories, distribution of finished product to retailers via DCs, and the storage of raw materials and end product at factories and DCs. Besides, to make the structure more comprehensive, a flow-shop scheduling model in manufacturing part of the SC is integrated in order to obtain optimal delivery time of the product that consists of the makespan and the ship time of the product to DCs via factories. Moreover, to make the model more realistic, shortage in the form of backorder can occur in each period. The two objectives are minimizing the total SC costs as well as minimizing the average tardiness of product to DCs. The obtained model is a bi-objective mixed-integer non-linear programming (MINLP) model that is shown to belong to NP-Hard class of the optimization problems. Thus, a novel algorithm, called multi-objective biogeography based optimization (MOBBO) with tuned parameters is presented to find a near-optimum solution. As there is no benchmark available in the literature, the parameter-tuned multi-objective simulated annealing algorithm (MOSA) and the popular non-dominated sorting genetic algorithm (NSGA-II) are developed to validate the results obtained and to evaluate the performance of MOBBO using randomly generated test instances.