دانلود مقاله ISI انگلیسی شماره 70467
ترجمه فارسی عنوان مقاله

بهینه سازی قوی و تصادفی ترکیبی برای طراحی شبکه زنجیره تامین حلقه بسته با استفاده از تجزیه Benders شتاب

عنوان انگلیسی
Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
70467 2016 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 249, Issue 1, 16 February 2016, Pages 76–92

ترجمه کلمات کلیدی
تجزیه و تحلیل پایداری و حساسیت؛ برنامه نویسی تصادفی؛ بهینه سازی قوی؛ زنجیره تامین حلقه بسته - تجزیه Benders
کلمات کلیدی انگلیسی
Robustness and sensitivity analysis; Stochastic programming; Robust optimization; Closed-loop supply chain; Benders decomposition
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی قوی و تصادفی ترکیبی برای طراحی شبکه زنجیره تامین حلقه بسته با استفاده از تجزیه Benders شتاب

چکیده انگلیسی

Environmental, social and economic concerns motivate the operation of closed-loop supply chain networks (CLSCN) in many industries. We propose a novel profit maximization model for CLSCN design as a mixed-integer linear program in which there is flexibility in covering the proportions of demand satisfied and returns collected based on the firm's policies. Our major contribution is to develop a novel hybrid robust-stochastic programming (HRSP) approach to simultaneously model two different types of uncertainties by including stochastic scenarios for transportation costs and polyhedral uncertainty sets for demands and returns. Transportation cost scenarios are generated using a Latin Hypercube Sampling method and scenario reduction is applied to consolidate them. An accelerated stochastic Benders decomposition algorithm is proposed for solving this model. To speed up the convergence of this algorithm, valid inequalities are introduced to improve the lower bound quality, and also a Pareto-optimal cut generation scheme is used to strengthen the Benders optimality cuts. Numerical studies are performed to verify our mathematical formulation and also demonstrate the benefits of the HRSP approach. The performance improvements achieved by the valid inequalities and Pareto-optimal cuts are demonstrated in randomly generated instances.