دانلود مقاله ISI انگلیسی شماره 74066
ترجمه فارسی عنوان مقاله

زمانبندی وظیفه مبتنی بر بهینه سازی جستجوی ارگانیسم همزیستی در محیط رایانش ابری

عنوان انگلیسی
Symbiotic Organism Search optimization based task scheduling in cloud computing environment
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
74066 2016 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 56, March 2016, Pages 640–650

ترجمه کلمات کلیدی
رایانش ابری؛ زمانبندی وظیفه؛ Makespan؛ جستجوی ارگانیسم همزیستی ؛ اکوسیستم
کلمات کلیدی انگلیسی
Cloud computing; Task scheduling; Makespan; Symbiotic Organism Search; Ecosystem
پیش نمایش مقاله
پیش نمایش مقاله  زمانبندی وظیفه مبتنی بر بهینه سازی جستجوی ارگانیسم همزیستی در محیط رایانش ابری

چکیده انگلیسی

Efficient task scheduling is one of the major steps for effectively harnessing the potential of cloud computing. In cloud computing, a number of tasks may need to be scheduled on different virtual machines in order to minimize makespan and increase system utilization. Task scheduling problem is NP-complete, hence finding an exact solution is intractable especially for large task sizes. This paper presents a Discrete Symbiotic Organism Search (DSOS) algorithm for optimal scheduling of tasks on cloud resources. Symbiotic Organism Search (SOS) is a newly developed metaheuristic optimization technique for solving numerical optimization problems. SOS mimics the symbiotic relationships (mutualism, commensalism, and parasitism) exhibited by organisms in an ecosystem. Simulation results revealed that DSOS outperforms Particle Swarm Optimization (PSO) which is one of the most popular heuristic optimization techniques used for task scheduling problems. DSOS converges faster when the search gets larger which makes it suitable for large-scale scheduling problems. Analysis of the proposed method conducted using tt-test showed that DSOS performance is significantly better than that of PSO particularly for large search space.