دانلود مقاله ISI انگلیسی شماره 74125
ترجمه فارسی عنوان مقاله

تشخیص مقاصد گردشگری با استفاده از تجزیه و تحلیل جغرافیایی مقیاس پذیر بر اساس پلت فرم رایانش ابری

عنوان انگلیسی
Detecting tourism destinations using scalable geospatial analysis based on cloud computing platform
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
74125 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers, Environment and Urban Systems, Volume 54, November 2015, Pages 144–153

ترجمه کلمات کلیدی
Flickr؛ سیستم های اطلاعات جغرافیایی؛ RHadoop؛ تجزیه و تحلیل فضایی
کلمات کلیدی انگلیسی
Flickr; Geographic Information Systems; RHadoop; Spatial analytics
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص مقاصد گردشگری با استفاده از تجزیه و تحلیل جغرافیایی مقیاس پذیر بر اساس پلت فرم رایانش ابری

چکیده انگلیسی

The number of geo-tagged digital photos has grown exponentially in the past decades. Increasing numbers of digital photos with geo-tags are available on many photo-sharing websites such as Flickr and Instagram. The proliferation of online photos offers great opportunities to study people's travel experiences and preferences. Mining tourists' behavior and city preferences has become popular in recent geographic information system (GIS) research. However, the huge amount of data also poses challenges in spatial analytics. In this study, we automate the detection of places of interest in multiple cities based on spatial and temporal features of Flickr images from 2007 on. We also speed up the process by running jobs on top of the RHadoop platform. This project provides fast and accurate tourist destination detection by mining large amounts of geo-tagged Flickr images. In addition, this study provides insight in applying the RHadoop platform to strengthen large geospatial data analytics. Our methods can be applied to many other cities, and results are valuable for tourism management.