دانلود مقاله ISI انگلیسی شماره 74129
ترجمه فارسی عنوان مقاله

نقشه تطبیق مبتنی بر رایانش ابری برای مرکز داده حمل و نقل

عنوان انگلیسی
Cloud computing-based map-matching for transportation data center
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
74129 2015 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Electronic Commerce Research and Applications, Volume 14, Issue 6, October–November 2015, Pages 431–443

ترجمه کلمات کلیدی
نقشه تطبیق؛ MapReduce؛ Hadoop؛ داده ردیابی وسایل نقلیه، حفاظت از حریم خصوصی GPS
کلمات کلیدی انگلیسی
Map-matching; MapReduce; Hadoop; Vehicle tracking data; GPS privacy protection
پیش نمایش مقاله
پیش نمایش مقاله  نقشه تطبیق مبتنی بر رایانش ابری برای مرکز داده حمل و نقل

چکیده انگلیسی

Transportation data center has recently become a common practice of modern integrated transportation management in major cities of China. Being the convergence center of large-scale multi-source vehicle tracking data, it caused great challenge on GPS map-matching efficiency and privacy protection. In this paper, we propose a secure parallel map-matching system based on Cloud Computing technology to meet the demand of transportation data center. The main contributions are as follows: (1) we propose a leapfrog method to improve the efficiency of traditional serial map-matching algorithm on the increasingly common high sampling rate GPS data; (2) we adapt the serial leapfrog map-matching algorithm for cloud computing environment by reforming it in the MapReduce paradigm; (3) we propose a privacy-aware map-matching model over hybrid clouds to realize the sensitive GPS data protection. We implemented the proposed map-matching system in the hadoop platform and tested its performance with a large-scale vehicle tracking dataset, which exceeds 100 billion records. The experimental results show that our approach is highly efficient and effective on massive vehicle tracking data processing.