دانلود مقاله ISI انگلیسی شماره 74170
ترجمه فارسی عنوان مقاله

بررسی و پیش بینی بهره وری انرژی در پلت فرم های رایانش ابری

عنوان انگلیسی
Assessing and forecasting energy efficiency on Cloud computing platforms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
74170 2015 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 45, April 2015, Pages 70–94

ترجمه کلمات کلیدی
رایانش ابری؛ بهره وری انرژی؛ بهره وری محیط زیست؛ پیش بینی؛ محاسبات سبز؛ ارائه دهنده IaaS
کلمات کلیدی انگلیسی
Cloud computing; Energy efficiency; Ecological efficiency; Forecasting; Green computing; IaaS provider
پیش نمایش مقاله
پیش نمایش مقاله  بررسی و پیش بینی بهره وری انرژی در پلت فرم های رایانش ابری

چکیده انگلیسی

IaaS providers have become interested in optimising their infrastructure energy efficiency. To do so, their VM placement algorithms need to know the current and future energy efficiency at different levels (Virtual Machine, node, infrastructure and service levels) and for potential actions such as service deployment or VM deployment, migration or cancellation. This publication provides a mathematical formulation for the previous aspects, as well as the design of a CPU utilisation estimator used to calculate the aforementioned forecasts. The correct adjustment of the estimators’ configuration parameters has been proved to lead to considerable precision improvements. When running Web workloads, estimators focused on noise filtering provide the best precision even if they react slowly to changes, whereas reactive predictors are desirable for batch workloads. Furthermore, the precision when running batch workloads partially depends on each execution. Finally, it has been observed that the forecasts precision degradation as such forecasts are performed for a longer time period in the future is smaller when running web workloads.