دانلود مقاله ISI انگلیسی شماره 74183
ترجمه فارسی عنوان مقاله

عدم قطعیت تعیین مقدار با استفاده از روش مونت کارلو در تنظیم رایانش ابری

عنوان انگلیسی
Uncertainty quantification through the Monte Carlo method in a cloud computing setting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
74183 2014 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Physics Communications, Volume 185, Issue 5, May 2014, Pages 1355–1363

ترجمه کلمات کلیدی
عدم قطعیت تعیین مقدار - رایانش ابری؛ روش مونت کارلو - الگوریتم موازی؛ MapReduce
کلمات کلیدی انگلیسی
Uncertainty quantification; Cloud computing; Monte Carlo method; Parallel algorithm; MapReduce
پیش نمایش مقاله
پیش نمایش مقاله  عدم قطعیت تعیین مقدار با استفاده از روش مونت کارلو در تنظیم رایانش ابری

چکیده انگلیسی

The Monte Carlo (MC) method is the most common technique used for uncertainty quantification, due to its simplicity and good statistical results. However, its computational cost is extremely high, and, in many cases, prohibitive. Fortunately, the MC algorithm is easily parallelizable, which allows its use in simulations where the computation of a single realization is very costly. This work presents a methodology for the parallelization of the MC method, in the context of cloud computing. This strategy is based on the MapReduce paradigm, and allows an efficient distribution of tasks in the cloud. This methodology is illustrated on a problem of structural dynamics that is subject to uncertainties. The results show that the technique is capable of producing good results concerning statistical moments of low order. It is shown that even a simple problem may require many realizations for convergence of histograms, which makes the cloud computing strategy very attractive (due to its high scalability capacity and low-cost). Additionally, the results regarding the time of processing and storage space usage allow one to qualify this new methodology as a solution for simulations that require a number of MC realizations beyond the standard.