دانلود مقاله ISI انگلیسی شماره 74201
ترجمه فارسی عنوان مقاله

یک روش حالت ارتجاعی برنامه کاربردی و مقیاس گذاری فرکانس ترکیب شده برای رایانش ابری با انرژی کارآمد

عنوان انگلیسی
A combined frequency scaling and application elasticity approach for energy-efficient cloud computing
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
74201 2014 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Sustainable Computing: Informatics and Systems, Volume 4, Issue 4, December 2014, Pages 205–214

ترجمه کلمات کلیدی
رایانش ابری؛ بهره وری انرژی؛ کیفیت خدمات؛ مجازی سازی؛ مقیاس گذاری فرکانس؛ حالت ارتجاعی برنامه کاربردی
کلمات کلیدی انگلیسی
Cloud computing; Energy-efficiency; Quality-of-service; Virtualization; Frequency scaling; Application elasticity
پیش نمایش مقاله
پیش نمایش مقاله  یک روش حالت ارتجاعی برنامه کاربردی و مقیاس گذاری فرکانس ترکیب شده برای رایانش ابری با انرژی کارآمد

چکیده انگلیسی

Energy management has become increasingly necessary in large-scale cloud data centers to address high operational costs and carbon footprints to the environment. In this work, we combine three management techniques that can be used to control cloud data centers in an energy-efficient manner: changing the number of virtual machines, the number of cores, and scaling the CPU frequencies. We present a feedback controller that determines an optimal configuration to minimize energy consumption while meeting performance objectives. The controller can be configured to accomplish these goals in a stable manner, without causing large oscillations in the resource allocations. To meet the needs of individual applications under different workload conditions, the controller parameters are automatically adjusted at runtime based on a system model that is learned online. The potential of the proposed approach is evaluated in a video encoding scenario. The results show that our combined approach achieves up to 34% energy savings compared to the constituent approaches—core change, virtual machine change, and CPU frequency change policies, while meeting the performance target.