دانلود مقاله ISI انگلیسی شماره 74234
ترجمه فارسی عنوان مقاله

مدل برنامه نویسی سطح bi چند هدفه جدید برای برنامه ریزی چند کار آگاه محل و انرژی در رایانش ابری

عنوان انگلیسی
A new multi-objective bi-level programming model for energy and locality aware multi-job scheduling in cloud computing
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
74234 2014 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 36, July 2014, Pages 91–101

ترجمه کلمات کلیدی
انرژی آگاه؛ محل داده ها؛ برنامه ریزی چند کار؛ رایانش ابری؛ MapReduce
کلمات کلیدی انگلیسی
Energy aware; Data locality; Multi-job scheduling; Cloud computing; MapReduce
پیش نمایش مقاله
پیش نمایش مقاله  مدل برنامه نویسی سطح bi چند هدفه جدید برای برنامه ریزی چند کار آگاه محل و انرژی در رایانش ابری

چکیده انگلیسی

How to reduce power consumption of data centers has received worldwide attention. By combining the energy-aware data placement policy and locality-aware multi-job scheduling scheme, we propose a new multi-objective bi-level programming model based on MapReduce to improve the energy efficiency of servers. First, the variation of energy consumption with the performance of servers is taken into account; second, data locality can be adjusted dynamically according to current network state; last but not least, considering that task-scheduling strategies depend directly on data placement policies, we formulate the problem as an integer bi-level programming model. In order to solve the model efficiently, specific-design encoding and decoding methods are introduced. Based on these, a new effective multi-objective genetic algorithm based on MOEA/D is proposed. As there are usually tens of thousands of tasks to be scheduled in the cloud, this is a large-scale optimization problem and a local search operator is designed to accelerate convergent speed of the proposed algorithm. Finally, numerical experiments indicate the effectiveness of the proposed model and algorithm.