دانلود مقاله ISI انگلیسی شماره 78428
ترجمه فارسی عنوان مقاله

یک روش فیلترینگ احتمالی از طریق محاسبه تقریبی بیزی در ارزیابی مدل های شبیه سازی بیولوژیکی

عنوان انگلیسی
A likelihood-free filtering method via approximate Bayesian computation in evaluating biological simulation models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78428 2016 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computational Statistics & Data Analysis, Volume 94, February 2016, Pages 63–74

ترجمه کلمات کلیدی
محاسبات تقریبی بایر، مدل فضای حالت غیر خطی، شبیه سازی بیولوژیکی، بیان ژن
کلمات کلیدی انگلیسی
Approximate Bayesian computation; Nonlinear state space model; Biological simulation; Gene expression

چکیده انگلیسی

For the evaluation of the dynamic behavior of biological processes, e.g., gene regulatory sequences, we typically utilize nonlinear differential equations within a state space model in the context of genomic data assimilation. For the estimation of the parameter values for such systems, the particle filter can be a strong approach in terms of obtaining their theoretically exact posterior distributions of the parameter values. However, it has some drawbacks for dealing with biological processes in practice: (i) the number of unique particles decreases rapidly since the dimension of the parameter vector and the number of observed time points are higher than its capability, (ii) it cannot be applied when the likelihood function is analytically intractable, and (iii) the prior distributions of the parameter values are often arbitrary determined. To address these problems, we propose a novel method that utilizes the approximate Bayesian computation in filtering the data and self-organizing ensemble Kalman filter in constructing the prior distributions of the parameter values. Simulation studies show that the proposed method can overcome these problems; thus, it can estimate the posterior distributions of the parameter values with automatically setting prior distributions even for the cases that the particle filter cannot perform good results. Finally, we apply the method to real observation data in rat circadian oscillation and demonstrate the usefulness in practical situations.