دانلود مقاله ISI انگلیسی شماره 78481
ترجمه فارسی عنوان مقاله

یک مدل برنامه نویسی مخلتط صحیح واحد برای وزن فلوئنس به طور همزمان و بهینه سازی روزنه

عنوان انگلیسی
A unified mixed-integer programming model for simultaneous fluence weight and aperture optimization in VMAT, Tomotherapy, and Cyberknife
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78481 2015 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Operations Research, Volume 56, April 2015, Pages 134–150

ترجمه کلمات کلیدی
OR در طب؛ برنامه ریزی عدد صحیح؛ ابتکارات؛ طرح درمان پرتو درمانی؛ الگوریتمهای فراابتکاری؛ آرامش لاگرانژی
کلمات کلیدی انگلیسی
OR in medicine; Integer programming; Heuristics; Radiotherapy treatment planning; Metaheuristics; Lagrangian relaxation
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل برنامه نویسی مخلتط صحیح واحد برای وزن فلوئنس به طور همزمان و بهینه سازی روزنه

چکیده انگلیسی

In this paper, we propose and study a unified mixed-integer programming model that simultaneously optimizes fluence weights and multi-leaf collimator (MLC) apertures in the treatment planning optimization of VMAT, Tomotherapy, and CyberKnife. The contribution of our model is threefold: (i) Our model optimizes the fluence and MLC apertures simultaneously for a given set of control points. (ii) Our model can incorporate all volume limits or dose upper bounds for organs at risk (OAR) and dose lower bound limits for planning target volumes (PTV) as hard constraints, but it can also relax either of these constraint sets in a Lagrangian fashion and keep the other set as hard constraints. (iii) For faster solutions, we propose several heuristic methods based on the MIP model, as well as a meta-heuristic approach. The meta-heuristic is very efficient in practice, being able to generate dose- and machinery-feasible solutions for problem instances of clinical scale, e.g., obtaining feasible treatment plans to cases with 180 control points, 6750 sample voxels and 18,000 beamlets in 470 seconds, or cases with 72 control points, 8000 sample voxels and 28,800 beamlets in 352 seconds. With discretization and down-sampling of voxels, our method is capable of tackling a treatment field of 8000–64,000cm3, depending on the ratio of critical structure versus unspecified tissues.