دانلود مقاله ISI انگلیسی شماره 78596
ترجمه فارسی عنوان مقاله

مدل سازی محاسباتی انتشار غیر خطی در الکتروفیزیولوژی قلب: روش متخلخل-متوسط جدید

عنوان انگلیسی
Computational modeling of non-linear diffusion in cardiac electrophysiology: A novel porous-medium approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78596 2016 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Methods in Applied Mechanics and Engineering, Volume 300, 1 March 2016, Pages 70–83

ترجمه کلمات کلیدی
انتشار غیر خطی؛ روش المان محدود غیر خطی؛ الکتروفیزیولوژی قلب؛ قلب و عروق محاسباتی - معادله محیط متخلخل
کلمات کلیدی انگلیسی
Nonlinear diffusion; Nonlinear finite element method; Cardiac electrophysiology; Computational cardiology; Porous medium equation
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی محاسباتی انتشار غیر خطی در الکتروفیزیولوژی قلب: روش متخلخل-متوسط جدید

چکیده انگلیسی

The electrophysiological behavior of excitable biological media has been traditionally modeled using a nonlinear reaction–diffusion equation commonly known as the cable equation. To account for the propagating nature of electrical waves, virtually all cardiac electrophysiology formulations proposed to date consider a linear diffusion flux, a constitutive relation known in biology as Fick’s law. In this work, motivated by the porous nature of intercalated discs in cardiac muscle cells that mediate intercellular communication and ultimately tissue conductivity, we propose a novel formulation of cardiac electrophysiology that incorporates a nonlinear diffusion term of the porous-media kind. To solve the resulting system of non-linear partial differential equations we develop a non-linear implicit finite-element scheme that is suitable to simulations of large-scale cardiac problems. We show that the proposed porous-medium electrophysiology model results in propagating action potentials that have well-defined wavefronts and travel with finite speed. We also show that the proposed model captures the restitution properties of cardiac tissue similar to the cable model. We demonstrate the capabilities of our method by simulating the activation sequence of a three-dimensional human biventricular heart model, where important microstructural features like cardiomyocyte fiber orientation and the His–Purkinje activation network are successfully incorporated into the simulation.