دانلود مقاله ISI انگلیسی شماره 78788
ترجمه فارسی عنوان مقاله

MOEA/D-ARA+SBX: یک الگوریتم تکاملی چند هدفه جدید بر اساس تجزیه با الگوریتم قطرات باران مصنوعی و متقاطع باینری شبیه سازی شده

عنوان انگلیسی
MOEA/D-ARA+SBX: A new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78788 2016 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 107, 1 September 2016, Pages 197–218

ترجمه کلمات کلیدی
بهینه سازی چند هدفه؛ الگوریتم قطرات باران مصنوعی؛ تجزیه؛ همسایه های K- نزدیکترین؛ آرشیو نخبه گرا خارجی؛ تجزیه و تحلیل همگرایی
کلمات کلیدی انگلیسی
Multi-objective optimization; Artificial raindrop algorithm; Decomposition; k-nearest neighbors; External elitist archive; Convergence analysis
پیش نمایش مقاله
پیش نمایش مقاله  MOEA/D-ARA+SBX: یک الگوریتم تکاملی چند هدفه جدید بر اساس تجزیه با الگوریتم قطرات باران مصنوعی و متقاطع باینری شبیه سازی شده

چکیده انگلیسی

In the field of optimization computation, there has been a growing interest in applying intelligent algorithms to solve multi-objective optimization problems (MOPs). This paper focuses mainly on the multi-objective evolutionary algorithm based on decomposition, MOEA/D for short, which offers a practical general algorithmic framework of evolutionary multi-objective optimization, and has been achieved great success for a wide range of MOPs. Like most other algorithms, however, MOEA/D has its limitations, which are reflected in three aspects: the problem of balancing diversity and convergence, non-uniform distribution of the Pareto front (PF), and weak convergence of the algorithm. To alleviate these limitations, a new combination of the artificial raindrop algorithm (ARA) and a simulated binary crossover (SBX) operator is first integrated into the framework of MOEA/D to balance the convergence and diversity. Thus, our proposed approach is called MOEA/D with ARA and SBX (MOEA/D-ARA+SBX). On the other hand, the raindrop pool in ARA is further extended to an external elitist archive, which retains only non-dominated solutions and discards all others. In addition, the k-nearest neighbors approach is introduced to prune away redundant non-dominated solutions. In such a way, a Pareto approximate subset with good distribution to the true PF may be achieved. Based on the relevant mathematical theory and some assumptions, it is proven that MOEA/D-ARA+SBX can converge to the true PF with probability one. For performance evaluation and comparison purposes, the proposed approach was applied to 44 multi-objective test problems with all types of Pareto set shape, and compared with 16 other versions of MOEA/D. The experimental results indicate its advantages over other approaches.