دانلود مقاله ISI انگلیسی شماره 78851
ترجمه فارسی عنوان مقاله

یک رویکرد الگوریتم تکاملی پیش بینی لینک در شبکه های اجتماعی پویا

عنوان انگلیسی
An evolutionary algorithm approach to link prediction in dynamic social networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78851 2014 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Science, Volume 5, Issue 5, September 2014, Pages 750–764

ترجمه کلمات کلیدی
الگوریتم ها؛ داده کاوی؛ پیش بینی لینک؛ شبکه های اجتماعی؛ توییتر؛ شبکه های پیچیده - سیستم های پیچیده
کلمات کلیدی انگلیسی
Algorithms; Data mining; Link prediction; Social networks; Twitter; Complex networks; Complex systems
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد الگوریتم تکاملی پیش بینی لینک در شبکه های اجتماعی پویا

چکیده انگلیسی

Many real world, complex phenomena have underlying structures of evolving networks where nodes and links are added and removed over time. A central scientific challenge is the description and explanation of network dynamics, with a key test being the prediction of short and long term changes. For the problem of short-term link prediction, existing methods attempt to determine neighborhood metrics that correlate with the appearance of a link in the next observation period. Recent work has suggested that the incorporation of topological features and node attributes can improve link prediction. We provide an approach to predicting future links by applying the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to optimize weights which are used in a linear combination of sixteen neighborhood and node similarity indices. We examine a large dynamic social network with over 106 nodes (Twitter reciprocal reply networks), both as a test of our general method and as a problem of scientific interest in itself. Our method exhibits fast convergence and high levels of precision for the top twenty predicted links. Based on our findings, we suggest possible factors which may be driving the evolution of Twitter reciprocal reply networks.