دانلود مقاله ISI انگلیسی شماره 78961
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی تئوری کاربردی برای تشخیص عبارات از بالا به پایین

عنوان انگلیسی
A top-down information theoretic word clustering algorithm for phrase recognition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78961 2014 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 275, 10 August 2014, Pages 213–225

چکیده انگلیسی

Semi-supervised machine learning methods have the features of both, integrating labeled and unlabeled training data. In most structural problems, such as natural language processing and image processing, developing labeled data for a specific domain requires considerable amount of human resources. In this paper, we present a cluster-based method to fuse labeled training and unlabeled raw data. We design a top-down divisive clustering algorithm that ensures maximal information gain in the use of unlabeled data via clustering similar words. To implement this idea, we design a top-down iterative K-means clustering algorithm to merge word clusters. Differently, the derived term groups are then encoded as new features for the supervised learners in order to improve the coverage of lexical information. Without additional training data or external materials, this approach yields state-of-the-art performance on the shallow parsing and base-chunking benchmark datasets (94.50 and 93.12 in F(β) rates).