دانلود مقاله ISI انگلیسی شماره 78968
ترجمه فارسی عنوان مقاله

یک الگوریتم خوشه بندی فازی جدید برای تجزیه و تحلیل جغرافیایی و جمعیتی

عنوان انگلیسی
A novel kernel fuzzy clustering algorithm for Geo-Demographic Analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78968 2015 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 317, 1 October 2015, Pages 202–223

ترجمه کلمات کلیدی
خوشه بندی فازی، تجزیه و تحلیل جغرافیایی و جمعیتی، خوشه بندی فازی احتمالی استنتاج، خوشه بندی مبتنی بر هسته، تعامل فضایی - مدل اصلاح
کلمات کلیدی انگلیسی
Fuzzy clustering; Geo-Demographic Analysis; Intuitionistic possibilistic fuzzy clustering; Kernel-based clustering; Spatial Interaction – Modification Model

چکیده انگلیسی

Geo-Demographic Analysis (GDA) is a major concentration of various interdisciplinary researches and has been used in many decision-making processes regarding the provision and distribution of products and services in society. Machine learning methods namely Principal Component Analysis, Self-Organizing Map, K-Means, fuzzy clustering and fuzzy geographically weighted clustering were proposed to enhance the quality of GDA. Among them, the state-of-the-art method – Modified Intuitionistic Possibilistic Fuzzy Geographically Weighted Clustering (MIPFGWC) has some drawbacks such as: (i) using the Euclidean similarity measure often results in high error rate and sensitivity to noises and outliers; (ii) updating the membership matrix by the Spatial Interaction – Modification Model (SIM2) model leads to new centers not being “geographically aware”. In this paper, we present a novel fuzzy clustering algorithm named as Kernel Fuzzy Geographically Clustering (KFGC) that utilizes both the kernel similarity function and the new update mechanism of the SIM2 model to remedy the disadvantages of MIPFGWC. Some supported properties and theorems of KFGC are also examined in the paper. Specifically, the differences between solutions of KFGC and those of MIPFGWC and of some variants of KFGC are theoretically validated. Lastly, experimental analysis is performed to compare the performance of KFGC with those of the relevant algorithms in terms of clustering quality.