دانلود مقاله ISI انگلیسی شماره 78977
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی بهینه سازی ذخیره سازی برای داده های تابی با ابعاد بزرگ

عنوان انگلیسی
Storage-optimizing clustering algorithms for high-dimensional tick data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78977 2014 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 9, July 2014, Pages 4148–4157

ترجمه کلمات کلیدی
تیک داده ها، خوشه بندی ذخیره سازی
کلمات کلیدی انگلیسی
Tick data; Clustering; Storage

چکیده انگلیسی

Tick data are used in several applications that need to keep track of values changing over time, like prices on the stock market or meteorological measurements. Due to the possibly very frequent changes, the size of tick data tends to increase rapidly. Therefore, it becomes of paramount importance to reduce the storage space of tick data while, at the same time, allowing queries to be executed efficiently. In this paper, we propose an approach to decompose the original tick data matrix by clustering their attributes using a new clustering algorithm called Storage-Optimizing Hierarchical Agglomerative Clustering (SOHAC). We additionally propose a method for speeding up SOHAC based on a new lower bounding technique that allows SOHAC to be applied to high-dimensional tick data. Our experimental evaluation shows that the proposed approach compares favorably to several baselines in terms of compression. Additionally, it can lead to significant speedup in terms of running time.