دانلود مقاله ISI انگلیسی شماره 79014
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی C-means فازی فضایی شرطی برای تقسیم بندی از تصاویر MRI

عنوان انگلیسی
Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79014 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 34, September 2015, Pages 758–769

ترجمه کلمات کلیدی
تقسیم بندی تصویر؛ تصویر MRI مغز؛ C-means فازی؛ FCM فضایی شرطی
کلمات کلیدی انگلیسی
Image segmentation; MRI brain image; Fuzzy C-means; Conditional spatial FCM
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی C-means فازی فضایی شرطی برای تقسیم بندی از تصاویر MRI

چکیده انگلیسی

The fuzzy C-means (FCM) algorithm has got significant importance due to its unsupervised form of learning and more tolerant to variations and noise as compared to other methods in medical image segmentation. In this paper, we propose a conditional spatial fuzzy C-means (csFCM) clustering algorithm to improve the robustness of the conventional FCM algorithm. This is achieved through the incorporation of conditioning effects imposed by an auxiliary (conditional) variable corresponding to each pixel, which describes a level of involvement of the pixel in the constructed clusters, and spatial information into the membership functions. The problem of sensitivity to noise and intensity inhomogeneity in magnetic resonance imaging (MRI) data is effectively reduced by incorporating local and global spatial information into a weighted membership function. The experimental results on four volumes of simulated and one volume of real-patient MRI brain images, each one having 51 images, show that the csFCM algorithm has superior performance in terms of qualitative and quantitative studies such as, cluster validity functions, segmentation accuracy, tissue segmentation accuracy and receiver operating characteristic (ROC) curve on the image segmentation results than the k-means, FCM and some other recently proposed FCM-based algorithms.