دانلود مقاله ISI انگلیسی شماره 79018
ترجمه فارسی عنوان مقاله

پیش بینی سری زمانی فازی با استفاده از الگوریتم خوشه بندی سلسله مراتبی

عنوان انگلیسی
Fuzzy time series prediction using hierarchical clustering algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79018 2011 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 4, April 2011, Pages 4312–4325

ترجمه کلمات کلیدی
سری های زمانی غیر خطی؛ پیش بینی فازی چند مدلی؛ الگوریتم خوشه بندی همبستگی متقابل؛ الگوریتم های خوشه بندی سلسله مراتبی
کلمات کلیدی انگلیسی
Non-linear time series; Multiple model fuzzy predictors; Cross-correlation clustering algorithm; Hierarchical clustering algorithms

چکیده انگلیسی

In many cases, the k-means clustering algorithm has been most frequently used to the field of data mining, fuzzy control systems and prediction since it was designed in simple procedures and excellent ability of classification. However, it sometimes brought about the failed results for non-linear data by classification behavior caused by just considering the statistical characteristics of non-linear data such as distances between data. To overcome the problems above, this paper proposes a new clustering algorithm of which the structure hierarchically classifies non-linear data. The proposed hierarchical classification technique consists of two levels, called upper clusters and lower fuzzy sets, using the cross-correlation clustering algorithm combined with the k-means clustering algorithm (HCKA), and it was able to improve classification accuracy. In addition, this paper constructs multiple model fuzzy predictors (MMFPs) corresponding to difference data of original time series, which was able to reflect the various characteristics of the time series to the proposed system. Simulation results show that the proposed system was effective and useful for modeling and predicting non-linear time series.