دانلود مقاله ISI انگلیسی شماره 79029
ترجمه فارسی عنوان مقاله

فیلتر چند مرحله برای بهبود سطح اعتماد به نفس و تعیین خوشه غالب در الگوریتم های خوشه بندی داده های بیان ژن

عنوان انگلیسی
Multi-stage filtering for improving confidence level and determining dominant clusters in clustering algorithms of gene expression data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79029 2013 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers in Biology and Medicine, Volume 43, Issue 9, 1 September 2013, Pages 1120–1133

ترجمه کلمات کلیدی
سط ح اطمینان؛ خوشه غالب؛ خوشه بندی فازی؛ بیان ژن
کلمات کلیدی انگلیسی
Confidence level; Dominant cluster; Fuzzy clustering; Gene expression
پیش نمایش مقاله
پیش نمایش مقاله  فیلتر چند مرحله برای بهبود سطح اعتماد به نفس و تعیین خوشه غالب در الگوریتم های خوشه بندی داده های بیان ژن

چکیده انگلیسی

A drastic improvement in the analysis of gene expression has lead to new discoveries in bioinformatics research. In order to analyse the gene expression data, fuzzy clustering algorithms are widely used. However, the resulting analyses from these specific types of algorithms may lead to confusion in hypotheses with regard to the suggestion of dominant function for genes of interest. Besides that, the current fuzzy clustering algorithms do not conduct a thorough analysis of genes with low membership values. Therefore, we present a novel computational framework called the “multi-stage filtering-Clustering Functional Annotation” (msf-CluFA) for clustering gene expression data. The framework consists of four components: fuzzy c-means clustering (msf-CluFA-0), achieving dominant cluster (msf-CluFA-1), improving confidence level (msf-CluFA-2) and combination of msf-CluFA-0, msf-CluFA-1 and msf-CluFA-2 (msf-CluFA-3). By employing double filtering in msf-CluFA-1 and apriori algorithms in msf-CluFA-2, our new framework is capable of determining the dominant clusters and improving the confidence level of genes with lower membership values by means of which the unknown genes can be predicted.