دانلود مقاله ISI انگلیسی شماره 79046
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی فضایی مبتنی بر تراکم با در نظر گرفتن همگرایی فضایی و شباهت ویژگی

عنوان انگلیسی
A density-based spatial clustering algorithm considering both spatial proximity and attribute similarity
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79046 2012 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Geosciences, Volume 46, September 2012, Pages 296–309

چکیده انگلیسی

Geometrical properties and attributes are two important characteristics of a spatial object. In previous spatial clustering studies, these two characteristics were often neglected. This paper addresses the problem of how to accommodate geometrical properties and attributes in spatial clustering. A new density-based spatial clustering algorithm (DBSC) is developed by considering both spatial proximity and attribute similarity. Delaunay triangulation with edge length constraints is first employed for modeling the spatial proximity relationships among spatial objects. A modified density-based clustering strategy is then designed and used to identify spatial clusters. Objects in the same cluster detected by the DBSC algorithm are proximal in a spatial domain and similar in an attribute domain. In addition, the algorithm is able to detect clusters of arbitrary shapes and non-homogeneous densities in the presence of noise. The effectiveness and practicability of the DBSC algorithm are validated using both simulated and real spatial datasets.