دانلود مقاله ISI انگلیسی شماره 79050
ترجمه فارسی عنوان مقاله

ترکیب اطلاعات محلی الگوریتم های خوشه بندی فازی برای تشخیص تغییر در تصاویر سنجش از دور

عنوان انگلیسی
Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79050 2012 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 12, Issue 8, August 2012, Pages 2683–2692

ترجمه کلمات کلیدی
سنجش از دور؛ تشخیص تغییر؛ تصاویر چند زمانه؛ اطلاعات محلی؛ خوشه بندی c-means فازی؛ خوشه بندی Gustafson–Kessel؛ الگوریتم های ژنتیکی؛ بازپخت شبیه سازی شده - Xie–Beni و اقدامات اعتبار hypervolume فازی
کلمات کلیدی انگلیسی
Remote sensing; Change detection; Multitemporal images; Local information; Fuzzy c-means clustering; Gustafson–Kessel clustering; Genetic algorithms; Simulated annealing; Xie–Beni and fuzzy hypervolume validity measures
پیش نمایش مقاله
پیش نمایش مقاله  ترکیب اطلاعات محلی الگوریتم های خوشه بندی فازی برای تشخیص تغییر در تصاویر سنجش از دور

چکیده انگلیسی

In this paper we have used two fuzzy clustering algorithms, namely fuzzy c-means (FCM) and Gustafson–Kessel clustering (GKC) along with local information for unsupervised change detection in multitemporal remote sensing images. In conventional FCM and GKC no spatio-contextual information is taken into account and thus the result is not so much robust to small changes. Since the pixels are highly correlated with their neighbors in image space (spatial domain), incorporation of local information enhances the performance of the algorithms. In this work we have introduced a new technique for incorporation of local information. Change detection maps are obtained by separating the pixel-patterns of the difference image into two groups. Hybridization of FCM and GKC with two other optimization techniques, genetic algorithm (GA) and simulated annealing (SA), is made to further enhance the performance. To show the effectiveness of the proposed technique, experiments are conducted on two multispectral and multitemporal remote sensing images. Two fuzzy cluster validity measures (Xie–Beni and fuzzy hypervolume) have been used to quantitatively evaluate the performance. Results are compared with those of existing state of the art Markov random field (MRF) and neural network based algorithms and found to be superior. The proposed technique is less time consuming and unlike MRF does not require any a priori knowledge of distributions of changed and unchanged pixels.