دانلود مقاله ISI انگلیسی شماره 79058
ترجمه فارسی عنوان مقاله

یک الگوریتم خوشه بندی صورت بر اساس اطلاعات متقابل برای تجزیه و تحلیل محتوای فیلم ☆

عنوان انگلیسی
A mutual information based face clustering algorithm for movie content analysis ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79058 2011 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Image and Vision Computing, Volume 29, Issue 10, September 2011, Pages 693–705

ترجمه کلمات کلیدی
خوشه بندی چهره - اطلاعات متقابل؛ کاهش نرمال؛ تجزیه و تحلیل نمودار طیفی؛ پردازش تصویر
کلمات کلیدی انگلیسی
Face clustering; Mutual information; Normalized cuts; Spectral graph analysis; Image processing
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم خوشه بندی صورت بر اساس اطلاعات متقابل برای تجزیه و تحلیل محتوای فیلم ☆

چکیده انگلیسی

This paper investigates facial image clustering, primarily for movie video content analysis with respect to actor appearance. Our aim is to use novel formulation of the mutual information as a facial image similarity criterion and, by using spectral graph analysis, to cluster a similarity matrix containing the mutual information of facial images. To this end, we use the HSV color space of a facial image (more precisely, only the hue and saturation channels) in order to calculate the mutual information similarity matrix of a set of facial images. We make full use of the similarity matrix symmetries, so as to lower the computational complexity of the new mutual information calculation. We assign each row of this matrix as feature vector describing a facial image for producing a global similarity criterion for face clustering. In order to test our proposed method, we conducted two sets of experiments that have produced clustering accuracy of more than 80%. We also compared our algorithm with other clustering approaches, such as the k-means and fuzzy c-means (FCM) algorithms. Finally, in order to provide a baseline comparison for our approach, we compared the proposed global similarity measure with another one recently reported in the literature.