دانلود مقاله ISI انگلیسی شماره 79067
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی فازی جدید با محدودیت مکانی تطبیقی غیر محلی برای تقسیم بندی تصویر

عنوان انگلیسی
A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79067 2011 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Signal Processing, Volume 91, Issue 4, April 2011, Pages 988–999

ترجمه کلمات کلیدی
تقسیم بندی تصویر؛ الگوریتم خوشه بندی فازی؛ محدودیت مکانی غیر محلی؛ پارامتر مکانی تطبیقی؛ تصویر (MR) رزونانس مغناطیسی
کلمات کلیدی انگلیسی
Image segmentation; Fuzzy clustering algorithm; Non local spatial constraint; Adaptive spatial parameter; Magnetic resonance (MR) image

چکیده انگلیسی

Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions (GIFP_FCM) is a novel fuzzy clustering algorithm. However when GIFP_FCM is applied to image segmentation, it is sensitive to noise in the image because of ignoring the spatial information contained in the pixels. In order to solve this problem, a novel fuzzy clustering algorithm with non local adaptive spatial constraint (FCA_NLASC) is proposed in this paper. In the proposed method, a novel non local adaptive spatial constraint term is introduced to modify the objective function of GIFP_FCM. The characteristic of this technique is that the adaptive spatial parameter for each pixel is designed to make the non local spatial information of each pixel playing a different role in guiding the noisy image segmentation. Segmentation experiments on synthetic and real images, especially magnetic resonance (MR) images, are performed to assess the performance of an FCA_NLASC in comparison with GIFP_FCM and fuzzy c-means clustering algorithms with local spatial constraint. Experimental results show that the proposed method is robust to noise in the image and more effective than the comparative algorithms.