دانلود مقاله ISI انگلیسی شماره 79068
ترجمه فارسی عنوان مقاله

یک الگوریتم خوشه بندی K-نمونه اولیه فازی برای داده های عددی مخلوط و طبقه

عنوان انگلیسی
A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79068 2012 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 30, June 2012, Pages 129–135

ترجمه کلمات کلیدی
خوشه بندی فازی؛ داده کاوی؛ داده های ترکیبی؛ اندازه گیری عدم تشابه؛ مشخصه های قابل
کلمات کلیدی انگلیسی
Fuzzy clustering; Data mining; Mixed data; Dissimilarity measure; Attribute significance

چکیده انگلیسی

In many applications, data objects are described by both numeric and categorical features. The k-prototype algorithm is one of the most important algorithms for clustering this type of data. However, this method performs hard partition, which may lead to misclassification for the data objects in the boundaries of regions, and the dissimilarity measure only uses the user-given parameter for adjusting the significance of attribute. In this paper, first, we combine mean and fuzzy centroid to represent the prototype of a cluster, and employ a new measure based on co-occurrence of values to evaluate the dissimilarity between data objects and prototypes of clusters. This measure also takes into account the significance of different attributes towards the clustering process. Then we present our algorithm for clustering mixed data. Finally, the performance of the proposed method is demonstrated by a series of experiments on four real world datasets in comparison with that of traditional clustering algorithms.