دانلود مقاله ISI انگلیسی شماره 79075
ترجمه فارسی عنوان مقاله

یک الگوریتم خوشه بندی پالایش تکرار شونده قوی با هموارسازی فضای جستجو

عنوان انگلیسی
A robust iterative refinement clustering algorithm with smoothing search space
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79075 2010 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 23, Issue 5, July 2010, Pages 389–396

ترجمه کلمات کلیدی
خوشه بندی؛ هموارسازی فضای جستجو - هموارسازی هسته؛ الگوریتم ابتکاری
کلمات کلیدی انگلیسی
Clustering; Smoothing search space; Kernel smoothing; Heuristic algorithm
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم خوشه بندی پالایش تکرار شونده قوی با هموارسازی فضای جستجو

چکیده انگلیسی

Iterative refinement clustering algorithms are widely used in data mining area, but they are sensitive to the initialization. In the past decades, many modified initialization methods have been proposed to reduce the influence of initialization sensitivity problem. The essence of iterative refinement clustering algorithms is the local search method. The big numbers of the local minimum points which are embedded in the search space make the local search problem hard and sensitive to the initialization. The smaller number of local minimum points, the more robust of initialization for a local search algorithm is. In this paper, we propose a Top–Down Clustering algorithm with Smoothing Search Space (TDCS3) to reduce the influence of initialization. The main steps of TDCS3 are to: (1) dynamically reconstruct a series of smoothed search spaces into a hierarchical structure by ‘filling’ the local minimum points; (2) at the top level of the hierarchical structure, an existing iterative refinement clustering algorithm is run with random initialization to generate the clustering result; (3) eventually from the second level to the bottom level of the hierarchical structure, the same clustering algorithm is run with the initialization derived from the previous clustering result. Experiment results on 3 synthetic and 10 real world data sets have shown that TDCS3 has significant effects on finding better, robust clustering result and reducing the impact of initialization.