دانلود مقاله ISI انگلیسی شماره 79093
ترجمه فارسی عنوان مقاله

یک الگوریتم خوشه بندی داده ها برای پارتیشن بندی داده های طبقه بندی در شبکه های عصبی مصنوعی

عنوان انگلیسی
A data clustering algorithm for stratified data partitioning in artificial neural network
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79093 2012 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 39, Issue 8, 15 June 2012, Pages 7004–7014

ترجمه کلمات کلیدی
شبکه های عصبی مصنوعی؛ پارتیشن بندی داده ها؛ خوشه بندی داده؛ نگاشت خودسازمانده؛ خوشه بندی فازی؛ الگوریتم ژنتیک؛ الگوریتم خوشه بندی طراحی سفارشی
کلمات کلیدی انگلیسی
Artificial neural network; Data partitioning; Data clustering; Self organizing map; Fuzzy clustering; Genetic algorithm; Custom design clustering algorithm
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم خوشه بندی داده ها برای پارتیشن بندی داده های طبقه بندی در شبکه های عصبی مصنوعی

چکیده انگلیسی

The statistical properties of training, validation and test data play an important role in assuring optimal performance in artificial neural networks (ANNs). Researchers have proposed optimized data partitioning (ODP) and stratified data partitioning (SDP) methods to partition of input data into training, validation and test datasets. ODP methods based on genetic algorithm (GA) are computationally expensive as the random search space can be in the power of twenty or more for an average sized dataset. For SDP methods, clustering algorithms such as self organizing map (SOM) and fuzzy clustering (FC) are used to form strata. It is assumed that data points in any individual stratum are in close statistical agreement. Reported clustering algorithms are designed to form natural clusters. In the case of large multivariate datasets, some of these natural clusters can be big enough such that the furthest data vectors are statistically far away from the mean. Further, these algorithms are computationally expensive as well. We propose a custom design clustering algorithm (CDCA) to overcome these shortcomings. Comparisons are made using three benchmark case studies, one each from classification, function approximation and prediction domains. The proposed CDCA data partitioning method is evaluated in comparison with SOM, FC and GA based data partitioning methods. It is found that the CDCA data partitioning method not only perform well but also reduces the average CPU time.