دانلود مقاله ISI انگلیسی شماره 79114
ترجمه فارسی عنوان مقاله

پارتیشن بندی مبتنی بر ابعاد سریع و ادغام الگوریتم خوشه بندی

عنوان انگلیسی
Fast Dimension-based Partitioning and Merging clustering algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79114 2015 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 36, November 2015, Pages 143–151

ترجمه کلمات کلیدی
خوشه بندی؛ خوشه بندی صفحات - دسته بندی بر پایه تراکم
کلمات کلیدی انگلیسی
Clustering; Subspace clustering; Density-based clustering
پیش نمایش مقاله
پیش نمایش مقاله  پارتیشن بندی مبتنی بر ابعاد سریع و ادغام الگوریتم خوشه بندی

چکیده انگلیسی

Clustering multi-dense large scale high dimensional numeric datasets is a challenging task duo to high time complexity of most clustering algorithms. Nowadays, data collection tools produce a large amount of data. So, fast algorithms are vital requirement for clustering such data. In this paper, a fast clustering algorithm, called Dimension-based Partitioning and Merging (DPM), is proposed. In DPM, first, data is partitioned into small dense volumes during the successive processing of dataset dimensions. Then, noise is filtered out using dimensional densities of the generated partitions. Finally, merging process is invoked to construct clusters based on partition boundary data samples. DPM algorithm automatically detects the number of data clusters based on three insensitive tuning parameters which decrease the burden of its usage. Performance evaluation of the proposed algorithm using different datasets shows its fastness and accuracy compared to other clustering competitors.