دانلود مقاله ISI انگلیسی شماره 79120
ترجمه فارسی عنوان مقاله

ESC: یک الگوریتم خوشه بندی مبتنی بر هماهنگ سازی کارآمد

عنوان انگلیسی
ESC: An efficient synchronization-based clustering algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79120 2013 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 40, March 2013, Pages 111–122

ترجمه کلمات کلیدی
الگوریتم خوشه بندی - مدل هماهنگ سازی دینامیکی؛ بسته شدن محله - روش نمونه گیری تراکم جانبدارانه؛ معیار اعتبار خوشه
کلمات کلیدی انگلیسی
Clustering algorithm; Dynamical synchronization model; Neighborhood closure; Density-biased sampling; Cluster validity criterion

Clustering is an essential approach for detecting the intrinsic groups in data. An efficient clustering algorithm based on a generalized local synchronization model is proposed. It uses a novel stopping criterion of data synchronization to detect clusters prior to the perfect synchronization. Moreover, a density-biased sampling method is adopted to extract samples from the original data set. The clustering structure can be effectively revealed on the samples. As a result, the clustering efficiency is significantly improved. By using a cluster validity criterion, the proposed algorithm can find clusters of arbitrary number, shape, size and density as well as isolate noises in the vector data without any data distribution assumption. Extensive experiments on several synthetic and real-world data sets show that the proposed algorithm possesses high accuracy and it is more efficient than the state-of-the-art synchronization-based clustering method.