دانلود مقاله ISI انگلیسی شماره 79132
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی مبتنی بر تعیین میزان

عنوان انگلیسی
Quantization-based clustering algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79132 2010 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 43, Issue 8, August 2010, Pages 2698–2711

ترجمه کلمات کلیدی
هیستوگرام - الگوریتم خوشه بندی - K-means
کلمات کلیدی انگلیسی
Histogram; Clustering algorithm; K-means
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی مبتنی بر تعیین میزان

چکیده انگلیسی

In this paper, a quantization-based clustering algorithm (QBCA) is proposed to cluster a large number of data points efficiently. Unlike previous clustering algorithms, QBCA places more emphasis on the computation time of the algorithm. Specifically, QBCA first assigns the data points to a set of histogram bins by a quantization function. Then, it determines the initial centers of the clusters according to this point distribution. Finally, QBCA performs clustering at the histogram bin level, rather than the data point level. We also propose two approaches to improve the performance of QBCA further: (i) a shrinking process is performed on the histogram bins to reduce the number of distance computations and (ii) a hierarchical structure is constructed to perform efficient indexing on the histogram bins. Finally, we analyze the performance of QBCA theoretically and experimentally and show that the approach: (1) can be easily implemented, (2) identifies the clusters effectively and (3) outperforms most of the current state-of-the-art clustering approaches in terms of efficiency.