دانلود مقاله ISI انگلیسی شماره 79134
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی کوانتومی کلونال ایمنی چند استخراج

عنوان انگلیسی
Multi-elitist immune clonal quantum clustering algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79134 2013 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 101, 4 February 2013, Pages 275–289

ترجمه کلمات کلیدی
خوشه بندی کوانتومی - انتخاب کلونال؛ چند نخبه گرا تکاملی؛ جهش تطبیقی؛ تقسیم بندی تصویر
کلمات کلیدی انگلیسی
Quantum clustering; Clonal selection; Multi-elitist co-evolution; Adaptive mutation; Image segmentation
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی کوانتومی کلونال ایمنی چند استخراج

چکیده انگلیسی

The quantum clustering (QC) algorithm suffers from the issues of getting stuck in local extremes and computational bottleneck when handling large-size image segmentation. By embedding a potential evolution formula into affinity function calculation of multi-elitist immune clonal optimization, and updating the cluster center based on the distance matrix, the multi-elitist immune clonal quantum clustering algorithm (ME-ICQC) is proposed in this paper. In the proposed framework, elitist population is composed of the individuals with high affinity, which is considered to play dominant roles in the evolutionary process. It can help to find the global optimal solution or near-optimal solution for most tested tasks. The diversity of population can be well maintained by general subgroup evolution of ME-ICQC. These different functions are implemented by the dissimilar mutation strategies or crossover operators. The bi-group exchanges the information of excellence antibodies using the hypercube co-evolution operation. Compared with existing algorithms, the ME-ICQC achieves an improved clustering accuracy with more stable convergence, but it is not significantly better than other optimization techniques combined with QC. Also, the experimental results also show that our algorithm performs well on multi-class, parameters-sensitive and large-size datasets.