دانلود مقاله ISI انگلیسی شماره 79137
ترجمه فارسی عنوان مقاله

الگوریتم های خوشه بندی صدا FCM موثر در تصاویر پزشکی

عنوان انگلیسی
Effective FCM noise clustering algorithms in medical images
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79137 2013 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers in Biology and Medicine, Volume 43, Issue 2, 1 February 2013, Pages 73–83

ترجمه کلمات کلیدی
خوشه بندی صدا؛ آنتروپی FCM؛ تصاویر پزشکی - قطعه بندی
کلمات کلیدی انگلیسی
Noise clustering; Entropy FCM; Medical images; Segmentation
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم های خوشه بندی صدا FCM موثر در تصاویر پزشکی

چکیده انگلیسی

The main motivation of this paper is to introduce a class of robust non-Euclidean distance measures for the original data space to derive new objective function and thus clustering the non-Euclidean structures in data to enhance the robustness of the original clustering algorithms to reduce noise and outliers. The new objective functions of proposed algorithms are realized by incorporating the noise clustering concept into the entropy based fuzzy C-means algorithm with suitable noise distance which is employed to take the information about noisy data in the clustering process. This paper presents initial cluster prototypes using prototype initialization method, so that this work tries to obtain the final result with less number of iterations. To evaluate the performance of the proposed methods in reducing the noise level, experimental work has been carried out with a synthetic image which is corrupted by Gaussian noise. The superiority of the proposed methods has been examined through the experimental study on medical images. The experimental results show that the proposed algorithms perform significantly better than the standard existing algorithms. The accurate classification percentage of the proposed fuzzy C-means segmentation method is obtained using silhouette validity index.