دانلود مقاله ISI انگلیسی شماره 79158
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی MinMax k-Means

عنوان انگلیسی
The MinMax k-Means clustering algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79158 2014 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 47, Issue 7, July 2014, Pages 2505–2516

ترجمه کلمات کلیدی
خوشه بندی؛ K-means - مقدار دهی اولیه K-means؛ خوشه های متعادل
کلمات کلیدی انگلیسی
Clustering; k-Means; k-Means initialization; Balanced clusters
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی MinMax k-Means

چکیده انگلیسی

Applying k-Means to minimize the sum of the intra-cluster variances is the most popular clustering approach. However, after a bad initialization, poor local optima can be easily obtained. To tackle the initialization problem of k-Means, we propose the MinMax k-Means algorithm, a method that assigns weights to the clusters relative to their variance and optimizes a weighted version of the k-Means objective. Weights are learned together with the cluster assignments, through an iterative procedure. The proposed weighting scheme limits the emergence of large variance clusters and allows high quality solutions to be systematically uncovered, irrespective of the initialization. Experiments verify the effectiveness of our approach and its robustness over bad initializations, as it compares favorably to both k-Means and other methods from the literature that consider the k-Means initialization problem.