دانلود مقاله ISI انگلیسی شماره 79166
ترجمه فارسی عنوان مقاله

یک روش جدید برای شناسایی چند مدلی از سیستم های پیچیده بر اساس هر دو الگوریتم های خوشه بندی فازی و عصبی

عنوان انگلیسی
A new approach for multimodel identification of complex systems based on both neural and fuzzy clustering algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79166 2010 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 23, Issue 7, October 2010, Pages 1064–1071

ترجمه کلمات کلیدی
سیستم های پیچیده - چند مدلی؛ شناسایی؛ یادگیری رقابتی تنبیه رقیب؛ K-means؛ K-means فازی
کلمات کلیدی انگلیسی
Complex systems; Multimodel; Identification; Rival Penalized Competitive Learning; K-means; Fuzzy K-means

چکیده انگلیسی

In this paper, a new approach for complex systems modeling based on both neural and fuzzy clustering algorithms is proposed, which aims to derive different models describing the system in the whole operating domain. The implementation of this approach requires two main steps. The first step consists in determining the structure of the model-base. For this, the number of models must be firstly worked out by using a neural network and a Rival Penalized Competitive Learning (RPCL). The different operating clusters are then selected referring to two different clustering algorithms (K-means and fuzzy K-means). The second step is a parametric identification of the different models in the base by using the clustering results for model orders and parameters estimation. This step is ended in a validation procedure which aims to confirm the efficiency of the proposed modeling by using the adequate method of validity computation. The proposed approach is implemented and tested with two nonlinear systems. The obtained results turn out to be satisfactory and show a good precision, which is strongly related to the dispersion of the data and the related clustering method.