دانلود مقاله ISI انگلیسی شماره 79176
ترجمه فارسی عنوان مقاله

الگوریتم زمان بندی چند هدفه بر اساس بهینه سازی cuckoo برای مشکل تخصیص کار در زمان کامپایل در سیستم های ناهمگن

عنوان انگلیسی
A multi-objectives scheduling algorithm based on cuckoo optimization for task allocation problem at compile time in heterogeneous systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79176 2016 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 60, 30 October 2016, Pages 234–248

ترجمه کلمات کلیدی
زمانبندی وظایف؛ سیستم های ناهمگن؛ الگوریتم بهینه سازی Cuckoo ؛ الگوریتم فراابتکاری؛ Makespan
کلمات کلیدی انگلیسی
Task scheduling; Heterogeneous systems; Cuckoo optimization algorithm; Meta-heuristic algorithm; Makespan
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم زمان بندی چند هدفه بر اساس بهینه سازی cuckoo برای مشکل تخصیص کار در زمان کامپایل در سیستم های ناهمگن

چکیده انگلیسی

To handle scheduling of tasks on heterogeneous systems, an algorithm is proposed to reduce execution time while allowing for maximum parallelization. The algorithm is based on multi-objective scheduling cuckoo optimization algorithm (MOSCOA). In this algorithm, each cuckoo represents a scheduling solution in which the ordering of tasks and processors allocated to them are considered. In addition, the operators of cuckoo optimization algorithm means laying and immigration are defined so that it is usable for scheduling scenario of the directed acyclic graph of the problem. This algorithm adapts cuckoo optimization algorithm operators to create proper scheduling in each stage. This ensures avoiding local optima while allowing for global search within the problem space for accelerating the finding of a global optimum and delivering a relatively optimized scheduling with the least number of repetitions. Moving toward global optima is done through a target immigration operator in this algorithm and schedules in each repetition are pushed toward optimized schedules to secure global optima. The results of MOSCOA implementation on a large number of random graphs and real-world application graphs with a wide range characteristics show MOSCOA superiority over the previous task scheduling algorithms.