دانلود مقاله ISI انگلیسی شماره 79181
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی جستجوی تصادفی سریع جدید برای مخلوط کردن شناسایی ماتریس در مشکلات معکوس کور خطی MIMO با ورودی های پراکنده ☆

عنوان انگلیسی
Novel fast random search clustering algorithm for mixing matrix identification in MIMO linear blind inverse problems with sparse inputs ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79181 2012 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 87, 15 June 2012, Pages 62–78

ترجمه کلمات کلیدی
مشکلات معکوس کور خطی؛ سیگنال های پراکنده - خوشه بندی جهت خط؛ سیستم های MIMO؛ آزمون فرضیه Neyman–Pearson
کلمات کلیدی انگلیسی
Linear blind inverse problems; Sparse signals; Line orientation clustering; MIMO systems; Neyman–Pearson hypothesis test

چکیده انگلیسی

In this paper we propose a novel fast random search clustering (RSC) algorithm for mixing matrix identification in multiple input multiple output (MIMO) linear blind inverse problems with sparse inputs. The proposed approach is based on the clustering of the observations around the directions given by the columns of the mixing matrix that occurs typically for sparse inputs. Exploiting this fact, the RSC algorithm proceeds by parameterizing the mixing matrix using hyperspherical coordinates, randomly selecting candidate basis vectors (i.e. clustering directions) from the observations, and accepting or rejecting them according to a binary hypothesis test based on the Neyman–Pearson criterion. The RSC algorithm is not tailored to any specific distribution for the sources, can deal with an arbitrary number of inputs and outputs (thus solving the difficult under-determined problem), and is applicable to both instantaneous and convolutive mixtures. Extensive simulations for synthetic and real data with different number of inputs and outputs, data size, sparsity factors of the inputs and signal to noise ratios confirm the good performance of the proposed approach under moderate/high signal to noise ratios.