دانلود مقاله ISI انگلیسی شماره 79229
ترجمه فارسی عنوان مقاله

ترکیبی از تکرار داده ها و الگوریتم زمان بندی برای بهبود در دسترس بودن داده ها در شبکه های داده

عنوان انگلیسی
Combination of data replication and scheduling algorithm for improving data availability in Data Grids
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79229 2013 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Network and Computer Applications, Volume 36, Issue 2, March 2013, Pages 711–722

ترجمه کلمات کلیدی
شبکه داده ها؛ تکرار داده ها؛ زمانبندی شغل؛ شبیه سازی
کلمات کلیدی انگلیسی
Data Grid; Data replication; Job scheduling; Simulation
پیش نمایش مقاله
پیش نمایش مقاله  ترکیبی از تکرار داده ها و الگوریتم زمان بندی برای بهبود در دسترس بودن داده ها در شبکه های داده

چکیده انگلیسی

Data Grid is a geographically distributed environment that deals with large-scale data-intensive applications. Effective scheduling in Grid can reduce the amount of data transferred among nodes by submitting a job to a node, where most of the requested data files are available. Data replication is another key optimization technique for reducing access latency and managing large data by storing data in a wisely manner. In this paper two algorithms are proposed, first a novel job scheduling algorithm called Combined Scheduling Strategy (CSS) that uses hierarchical scheduling to reduce the search time for an appropriate computing node. It considers the number of jobs waiting in queue, the location of required data for the job and the computing capacity of sites. Second a dynamic data replication strategy, called the Modified Dynamic Hierarchical Replication Algorithm (MDHRA) that improves file access time. This strategy is an enhanced version of Dynamic Hierarchical Replication (DHR) strategy. Data replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement. MDHRA replaces replicas based on the last time the replica was requested, number of access, and size of replica. It selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. The simulation results demonstrate the proposed replication and scheduling strategies give better performance compared to the other algorithms.