دانلود مقاله ISI انگلیسی شماره 79241
ترجمه فارسی عنوان مقاله

الگوریتم زمان بندی بر اساس واکشی اولیه در خوشه MapReduce

عنوان انگلیسی
Scheduling algorithm based on prefetching in MapReduce clusters
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79241 2016 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 38, January 2016, Pages 1109–1118

ترجمه کلمات کلیدی
محل داده ها؛ MapReduce؛ واکشی اولیه؛ وظیفه زمانبندی؛ حافظه؛ اطلاعات بزرگ
کلمات کلیدی انگلیسی
Data locality; MapReduce; Prefetching; Task scheduler; Memory; Big data
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم زمان بندی بر اساس واکشی اولیه در خوشه MapReduce

چکیده انگلیسی

Due to cluster resource competition and task scheduling policy, some map tasks are assigned to nodes without input data, which causes significant data access delay. Data locality is becoming one of the most critical factors to affect performance of MapReduce clusters. As machines in MapReduce clusters have large memory capacities, which are often underutilized, in-memory prefetching input data is an effective way to improve data locality. However, it is still posing serious challenges to cluster designers on what and when to prefetch. To effectively use prefetching, we have built HPSO (High Performance Scheduling Optimizer), a prefetching service based task scheduler to improve data locality for MapReduce jobs. The basic idea is to predict the most appropriate nodes for future map tasks based on current pending tasks and then preload the needed data to memory without any delaying on launching new tasks. To this end, we have implemented HPSO in Hadoop-1.1.2. The experiment results have shown that the method can reduce the map tasks causing remote data delay, and improves the performance of Hadoop clusters.