دانلود مقاله ISI انگلیسی شماره 137370
ترجمه فارسی عنوان مقاله

استنتاج بهبود یافته در مدل های پراکندگی

عنوان انگلیسی
Improved inference in dispersion models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137370 2017 28 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 51, November 2017, Pages 317-328

پیش نمایش مقاله
پیش نمایش مقاله  استنتاج بهبود یافته در مدل های پراکندگی

چکیده انگلیسی

We derive a general matrix Bartlett–type correction factor to the gradient statistic in the class of dispersion models. The correction improves the large–sample χ2 approximation to the null distribution of the gradient statistic when the sample size is finite. We conduct Monte Carlo simulation experiments to evaluate and compare the performance of various different tests, namely the usual Wald, likelihood ratio, score, and gradient tests, the Bartlett–corrected versions of the likelihood ratio, score, and gradient tests, and bootstrap–based tests. The simulation results suggest that the analytical and computational corrections are effective in removing size distortions of the type I error probability with no power loss. The impact of the corrections in two real data applications is considered for illustrative purposes.