دانلود مقاله ISI انگلیسی شماره 137433
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل لرزش صفحات مواد متخلخل ناهمگن مغناطیسی الکترواستاتیک بر پایه الاستیک استوار است

عنوان انگلیسی
Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137433 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Thin-Walled Structures, Volume 119, October 2017, Pages 33-46

پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل لرزش صفحات مواد متخلخل ناهمگن مغناطیسی الکترواستاتیک بر پایه الاستیک استوار است

چکیده انگلیسی

This paper proposes a four-variable shear deformation refined plate theory for free vibration analysis of embedded smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials. Magneto-electro-elastic properties of FG plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. The governing differential equations and boundary conditions of embedded porous FG plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. Influences of several important parameters such as material graduation exponent, porosity volume fraction, magnetic potential, electric voltage, various boundary conditions, elastic foundation parameters and plate side-to-thickness ratio on natural frequencies of embedded porous MEE-FG plate are investigated and discussed in detail. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates resting on elastic foundation. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.